SSA + OSTIV 2018, Reno (NV)

AVOIDING MILD HYPOXIA

CONCEPT OF ZERO HYPOXIA IN FLIGHT

Jean-Marie Clément & Heini Schaffner

Dr. Heini Schaffner, during the experimentation of a special mask 24.11.2008

THE RULES TODAY:

USA:

- crew 30 min > 12,500 ft or >14,000 ft
- pax: > 15,000 ft
- any > 25,000 ft, a 10 min safety supply

- EASA Sailpanes:
- crew 30 min > 10,000 ft or > 13,000 ft
- pax > 13,000 ft

FOLLOWING THIS RULE, THE GLIDER PILOT IS IN GREAT DANGER!

Even more in the US

• O₂ and glucose (fuel) >neurocellular metabolism >ATP

• ATP, the neurocellular fuel, has only few seconds storage, and can be depleted with even mild hypoxia.

• ATP <u>must</u> be produced <u>continuously</u>, any reduction in regeneration will cause **BRAIN MALFUNCTION**

• Nerve cells deprived of ATP stop working in few seconds and **DIE WITHIN MINUTES**

 The SpO₂ measured on your finger is NOT representative of the O₂ present in your brain cells (~ 2 hrs to reach cortex)

THIS MECHANISM IS IMPERCEPTIBLE

Typical SpO₂ Standard = 93% (equivalent to 5,000 ft) **Safety > 90%** 88% means Danger ! **Degradation of** cognitive functions

Warning:

Lung function deteriorates with duration of the flight, but collapses during tight circling !

THE SYMPTOMS OF MILD HYPOXIA

Phase	Saturat ion	Altitude	POSSIBLE SYMPTOMS AND CLINICAL SIGNS
	SpO2	Ft	
Indifferent Insidious Danger	90-93 %	5,000 (to 10,000	Reduction of vision in low light levels Hyperventilation Headache Reduction in capacity to accomplish new tasks or to manage an urgent situation
Compensatory Latent Danger!	80-90 %	10,000 to 15,000	Alteration of judgement, difficulties in mental calculation Decrease in coordination and writing Decreased effectiveness & performance, slowing of reflexes Tunnel Vision, fading colours, double vision Tingling Yawning Confusion, euphoria, sensation of well-being, followed by sleepiness

HYPERVENTILATION: AN INSIDIOUS ENEMY

- Happens to everybody around 8,000 ft (without extra O₂)
- Flushes away the CO_2 from the lungs and reduces cerebral perfusion >> immediately add O_2 , or pursed lips breathe, or sing (Dr. Knüppel), try to control your bpm, or descend!

NORMAL BREATHING HYPERVENTILATION

MRI of brain activity regions = level of oxygenation

Effects of 1 minute of voluntary hyperventilation on brain oxygen levels (vasoconstriction due to lack of CO2)

THE EFFECTIVE PERFORMANCE TIME

Replaces the old concept of Time of Useful Consciousness (TUC)

Altitude	EPT theoretical in hypo chambre	EPT practical in a glider
ft	min	min
18.000	20-30	10-15
20.000	<10	<5-6
22.000	8-10	4-5
25.000	3-5	2-3
30.000	1-2	0,5-1

HOW DO WE BREATHE ?

and

HOW DOES THE E.D.S WORK?

EDS-02D1 Inlet > 1.4 bar (min 1 bar dynamic) Output cannula (20 psi min 14)

Output

Control LED

Green/Red

THE EXPERIMENTATION IN THE LABORATORY Of the Winterthur High School of Aviation Engineering

STEP 1:

UNDERSTAND THE E.D.S

MEASUREMENT OF FLOW Vs (F) POSITIONS

THE QUANTITY OF O2 DELIVERED DEPENDS ON THE DURATION OF OPENING OF THE ELECTRONICALLY OPERATED VALVE AND

THE QUANTITY OF O2 DELIVERED DEPENDS ON THE PRESSURE AHEAD OF THE VALVE AND

(A) O

1st CONCLUSION:

THE SINGLE STAGE XCR "CHEAP" REDUCER

DOES NOT PERMIT FULL USE OF THE CYLINDER

SOLUTION: (2) REDUCERS IN SERIES

2,800/60 psi FOLLOWED BY 60/20 psi (200/4 bar and 4/1.5 bar)

STANDARD CONFIGURATION OF A TANDEM TWO-SEATER

- The medium pressure line goes first to back seat, then to front seat
- Small dia. (4 mm) pipe means high friction losses, pressure drop
- When inspirations are synchronized, the front seat pressure is too low

RECOMMENDED CONFIGURATION FOR A TANDEM TWO-SEATER

THE QUANTITY OF O2 DELIVERED DEPENDS ON THE LENGTH OF THE LINES AND

In a tandem two-seater, lines must be balanced and L<1,5 m

A & B : main cylinder(s) C : when possible, install a small capacity (ex. vario thermos)

CHECKING THE PRESSURE DURING

EXPERIMENTATION IN THE GLIDER

THE QUANTITY OF O2 DELIVERED DEPENDS ON THE POSITION OF THE (F) SELECTOR The amount of O_2 is not the one we expected!

Positions (F) The value F (x 1 000 ft) is supposed to be added to the actual altitude

Only F10 & F20 are useful (+R/M in emergency or doubt)

- Example: at 4 000 m and F20, flow should be 35+65=100 scc. It is in fact 90 scc
- F5 gives 10% more than N/F15 are of no interest.
- F20 = R/M above 5 000m, No further increase above 6 000m !
- F10 = +50%, F20= +100%

THE QUANTITY OF O₂ DELIVERED DEPENDS ON

- the pilot's respiratory frequency (bpm):
 75% of bolus from 20 to 30 bpm
 50% of bolus from 30 to 40 bpm (pathological tachypnea).
- OK for saving O₂, very bad for the pilot (HVR)!
- stress, fear, fatigue → deep and rapid breath

Here is the result of our experimentation 27

THE HYPOBARIC CHAMBER OF THE ZHAW Dr. Schaffner, 2 students and safety doctor Up to 24,600 ft by increments of 3,000 ft

A20 mask Cannulae for all 3 **EDS 02D1 CONTEC RECORDI** PULSOXIMETER

THE GUINEA PIGS IN THE PC 6 (all glider pilots) Up to 20,000 ft by increments of 3,000 ft in 1h20 min ♀ 23, BMI 20.4, non smoker - ♂ 38, BMI 31.4, Smok. (15/d) ♂ 69, BMI 26.3, non smoker - ♂ 36, BMI 25.4, Smok. (20/d)

The young fit lady non smoker: excellent response, position N gave 90% minimum ave. Periodic breathing unvoidable

The young male (36), smoking 20 cig./d, needs 20% more O₂ above 13,000 ft. Lung function not yet much deteriorated, but coming soon!

The fit senior (69), n.s., requires 100% more O_2 than the youngs for the same SpO₂. Lung function invariably decreases with age!

IN-FLIGHT STUDY OF REAL HYPOXIC INCIDENTS

• To chat or to be hypoxic: you must decide!

Young man, athletic, healthy, non smoker. 5 minutes chat between pilots, SpO2 falls between 85% and 88%. Very dangerous in a single seater!

IN-FLIGHT STUDY OF REAL HYPOXIC INCIDENTS

Urinating with difficulty

At 21,000 ft, with EDS on R/M (100%) as an anticipation of this effort apnoea, the pax (70, healthy, non smk.) remained 4 minutes at 80% - 85% SpO2. Equivalent to stay at 15,000 ft without oxygen

IN-FLIGHT STUDY OF REAL HYPOXIC INCIDENTS

Eating a sandwich

At 20,000 ft, pilot (30, very healthy) changes EDS to R/M (100%) as an anticipation of this strongly hypoxic activity. SpO2 goes up to 93% then collapses by 10 points during eating.

At 20,000 ft, during a cough crisis, Dr Schaffner could fuzzily see the EDS (A) but his brain (B) could not order his hand to increase the setting.

IN-FLIGHT STUDY OF REAL HYPOXIC INCIDENTS

• To cough or not to cough, that is the question

«For whatever reason, I started coughing, an incessant light coughing, dry. I realized then that I had to change the EDS to R/M position to increase my chances of recovery, but I saw already the selector fuzzily and I had not been able to verify the setting, my field of vision tapers to tunnel vision, I felt that I was no longer myself. <u>I was totally unable to act effectively or fly</u> the glider, a real stupor (inability to act but with open eyes) If I had been in a single seater, I would have probably lost the wings and would not be here to talk about it.»

Dr. Schaffner, p. 294 "Dancing With the Wind"

IN-FLIGHT STUDY OF REAL HYPOXIC INCIDENTS

 Non hypoxic hyperventilation: stress, fear, anxiety, over concentration, phobia. ~ 20,000 ft, periodic and episodic hyperventilatory breathing (Cheyne-Stockes). The high initial saturation (95%) made this episode passed unnoticed. Not a big problem as long as enough O2 is supplied

~ 21,000 ft, hypoxic "crash" caused by chaotic and uncoordinated breathing. After 40 min of hard battle in migratory rotors, partly in IMC, tension, fatigue, frustration, high physical efforts, **high "g's**" (compression of pulmonary alveoli) Pilot was a young, very healthy and trained, multiple world champion.

 Cannula on your nose and EDS "on" before take-off in order to avoid slow, insidious, ATP depletion

• Pilots >50, smoker or user of β blocker :

F10 at take-off, F15 (or F20) @ FL150

• Any "unusual feeling, uncomfort": switch to R/M for 5 min.

If the symptoms disappear, switch permanently to F10 or F20.

- Flying > FL200: EDS is <u>not sufficient</u>! Only very young and healthy people may climb to FL 250 with caution and a pulse oximeter.
- Train and apply pursed lips expiration.

• Alternatively: use a 2nd EDS in parallel.

Pre-oxygenate 5 min on R/M before any foreseeable effort.
 Very efficient, it costs nothing!

MAINTAIN ZERO HYPOXIA

THE RULES MAY BE SUFFICIENT FOR PHYSICAL SURVIVAL

BUT NOT FOR FLYING A GLIDER FOR HOURS!

P.I.C: GOOD & RESPONSIBLE OXYGEN MANAGEMENT

Dancing with the wind

Everything

and much more

in this book

TopFly

Jean-Marie Clément

www.topfly.aero

info@topfly.aero

THANK YOU FOR

YOUR ATTENTION